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In the diffusion-limited aggregation (DLA) model, pioneered by Witten and Sander
(Phys. Rev. Lett. 47, 1400 (1981)), diffusing particles irreversibly attach to a growing
cluster which is initiated with a single solid seed. This process generates clusters with a

branched morphology. Advection–diffusion-limited aggregation (ADLA) is a straightfor-
ward extension to this model, where the transport of the aggregating particles not only
depends on diffusion, but also on a fluid flow. The authors studying two-dimensional
and three-dimensional ADLA in laminar flows reported that clusters grow preferentially
against the flow direction. The internal structure of the clusters was mostly reported to
remain unaffected, except by Kaandorp et al. (Phys. Rev. Lett. 77, 2328 (1996)) who
found compact clusters “as the flow becomes more important”. In the present paper we
present three-dimensional simulations of ADLA. We did not find significant effects of
low Reynolds-number advection on the cluster structure. The contradicting results by
Kaandorp et al. (1996) were recovered only when the relaxation into equilibrium of the
advection–diffusion field was too slow, in combination with the synchronous addition of
multiple particles.

Keywords: Advection–diffusion-limited aggregation; diffusion-limited aggregation; lat-
tice Boltzmann; moment propagation.

1. Introduction

Since the pioneering paper by Witten and Sander,1 diffusion-limited aggrega-

tion (DLA) has been of continuous and extensive interest in studies using

experimental,2,3 theoretical,4–6 and computational1,7 approaches. In computational

models of DLA an initial solid seed is placed in the middle of a domain. A particle is

then released from a random position at some distance from the seed. The particle

carries out a random walk until it hits the seed after which it is added to the devel-

oping cluster. This procedure, when iterated, produces aggregates “distinguished

by their wispy appearance”.1 More recently, a number of authors8–12 have studied
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this process under the influence of flow, where Warren et al.10 studied “growth

by interception” with a growth probability determined by the fluid velocity. Such

advection–diffusion-limited aggregation has been studied not only for understanding

abiotic growth processes such as the growth of sedimenting clusters and the crystal-

ization of (falling) snowflakes (see Warren et al.10 and references therein), but also in

the context of coral growth modeling.11,13 In models of advection–diffusion-limited

aggregation the aggregating particles are transported both by diffusion and by a

fluid flow which interacts with the growing aggregate. Such systems should be dis-

tinguished from models of ballistic deposition,14–17 where particles move straightly

or according to a biased random walk and whose governing direction is unaffected

by the growing aggregate.

In most of these studies the only effect of fluid flow was a preferential growth

against the flow. The structure of the clusters as expressed by the fractal dimen-

sion was hardly affected, because of the “screening of streamlines from the in-

terior of (. . .) the clusters.”10 These results contradict an experimental study on

electrodeposition18 and a simulation study by Kaandorp et al.,11 where it was found

that under the influence of a governing flow the aggregates became more compact

and the “wispy appearance” was suppressed. To investigate the differences between

the work of Kaandorp et al.11 and the other models of advection–diffusion-limited

aggregation, in this paper we reinvestigate the effect of low Reynolds-number flows

(Re ≈ 0.06–0.3) on advection–diffusion-limited aggregation. Also, we aim to under-

stand why Kaandorp et al.11 found an effect of flow on the fractal structure of the

growing aggregates, whereas other authors did not.

2. Model and Simulation Methods

The model that we present here is based on the aggregation model by Kaandorp

et al.,11 which was originally developed to study the effect of flow on coral mor-

phology. This model is a Meakin19 growth model with added advection. In these

models, all possible biased random paths of the particles are ensemble averaged

and approximated by a continuous advection–diffusion process where the growing

cluster is a particle sink. The aggregation probabilities are then given by the local

fluxes into the cluster.

The simulation set-up is shown schematically in Fig. 1. We started with an

initial solid seed on a solid ground plane. A flow field was calculated using the

lattice Boltzmann–Bhatnagar Gross Krook method (LBGK).20 This method is well-

suited for problems of complex geometry21,22 such as DLA clusters. It is resolved

on a structured lattice, where we use 18 velocities and a zero velocity (D3Q19).

A no-slip (u = 0) boundary condition was applied at the aggregate and at the

solid ground plane. We also applied a no-slip boundary condition at the top plane,

following Kovács.12 Hence the clusters were grown in a channel flow. The left, right,

front and rear boundaries were periodic. Note that we used periodic boundaries for

the flow calculations.
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(c) Dispersion(b) Flow(a) Initial condition

(d) Aggregation

Fig. 1. Simulation set up. (a) Initial condition, (b) calculation of flow field, (c) advection–diffusion
of the growth resource, where the top plane is a source of resource and the ground plane and the
solid particles are resource sinks and (d) aggregation, the addition of particles. The sequence (b),
(c) and (d) is called a “growth cycle”. All calculations were carried out in three dimensions.

When the flow field had sufficiently approached stability (full convergence

model, FC) or after a fixed number of time steps (partial convergence model, PC),

the dispersion of particles through the fluid was simulated by numerically solving

the advection–diffusion equation. The advection–diffusion equation was solved us-

ing the moment propagation method.23–25 This method redistributes a particle

concentration R(x, t), biased by the stable flow field as calculated using the LBGK

equations,

R(x, t + 1) =
∑

i

[

(fi − ∆∗f eq
i (u = 0, ρ))R

ρ

]

x−ci,t

+ ∆∗R(x, t) , (1)

where the whole quantity inside [. . .] is evaluated at (x− ci, t), fi is the probability

that a carrier fluid particle moves into the lattice direction ci and f eq
i (u = 0, ρ) is

the probability that a particle moves along ci in a nonmoving fluid. The diffusion

coefficient D is set using the parameter ∆∗ as

D =
1

6
−

1

6
∆∗ (2)

for the D3Q19 model we used.25 The ratio between advective and diffusive transport

is expressed by the Péclet number Pé = ūL/D, where ū is the mean velocity and

L is a characteristic length. Throughout this paper we exclusively use the lattice

Péclet number Pélat, in which L = 1 lattice unit, the distance between two nodes

of the lattice.

Following Kaandorp et al.,11 the top plane was a source of growth resource

and both the ground plane and the cluster were resource sinks. We have followed

the Meakin19 convention by putting the resource sink at the developing cluster.

For the advection–diffusion calculations, the front and rear boundaries were peri-

odic, whereas at the left and right boundaries (i.e., in the flow direction) a no-flux
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Table 1. The amount of new particles added to the cluster

per growth step in the multi-particle model depending on the
amount of available new positions on the cluster (Kaandorp,
personal communication).

Number of possible positions (n) Number of particles added

n < 100 1
100 ≤ n ≤ 1000 10

1000 < n ≤ 10000 50
n > 10000 100

(reflecting) boundary was applied, thus preventing effects of the periodic images of

the growth forms.

In the Full Convergence model, the moment propagation equation was iterated

until the influx of resources at the top plane balanced to certain extent of the out-

flux of resource at the cluster and the ground plane, i.e., when the change of the

total resource mass in the system fell below a threshold,

∣

∣

∣

∣

∆(
∑

x R)

∆t
∑

x R

∣

∣

∣

∣

< θAD , (3)

where typically θAD = 10−6. In the Partial Convergence model, the moment prop-

agation equation was iterated for a fixed number of time steps; in this paper we

typically applied 50 iterations per growth cycle, thus following Kaandorp et al.11

After a resource dispersion field was obtained, solid nodes were added to the cluster

(Fig. 1(d)). Here we study two variants of this aggregation. In the single particle

model during each growth cycle a single solid particle is added to the cluster. This

follows the Witten and Sander1 model and the original Meakin19 model. In the

multiple particle model, however, the number of particles added is increased during

the simulation, depending on the size of the cluster (Table 1). In order to compare

our results to the results obtained previously by Kaandorp et al.,11 we take diffusion

coefficients as used in their simulations.

In order to decide which fluid sites should be added to the cluster, we first de-

termined the set of “growth candidates”; this is the set of nearest (face-connected)

neighbors of the cluster. In each of these candidates, the growth resource concen-

tration R(xi) indicates the probability that a particle is present and adheres to the

cluster. To enforce the addition of a fixed number of particles, these probabilities

were normalized to sum up to 1. Hence the probability P (xi) that a new particle

is added to the cluster at a face-connected neighbor was,

Paggr(xk) =
R(xk)
∑

j R(xj)
, (4)

where
∑

j sums over all nearest neighbors.
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The ADLA clusters were characterized using the fractal dimension, which we

measured using the radius of gyration Rg ,
26 where

Rg =

√

√

√

√

1

n

∑

i

∣

∣

∣

∣

∣

(

1

n

∑

k

xk

)

− xi

∣

∣

∣

∣

∣

2

(5)

with xi the coordinates of the particles in the cluster and the sums are over all the

particles in the cluster. The fractal dimension can be obtained by keeping track

of the radius of gyration during the growth of the cluster. For large DLA-clusters,

the radius of gyration gets a power-law dependence of the number of particles

N , Rg ∼ Nβ, where the fractal dimension Fr = 1/β. The clusters were further

characterized using the compactness C, which we define as the fraction of solid

material inside the convex hulla of the cluster,

C ≡
Vobject

Vhull

, (6)

where Vobject is the volume of the object, and Vhull is the volume of the convex hull,

which was determined using the quickhull27 algorithm.b Hypothesis testing was

carried out using one-way analyses of variance (ANOVA).c The simulations were

carried out on clusters of workstations, the DAS-228 and a Beowulf cluster29 on

which a typical simulation presented here took around 15 h (partial convergence)

to 50 h (full convergence).

3. Results

In Fig. 2 we show two typical clusters developed with the Full Convergence, Single

Particle model. In Fig. 2(a) the resource was exclusively transported by means of

diffusion, whereas in Fig. 2(b) transport was by diffusion and by advection, where

u

(b)(a)

Fig. 2. Typical three-dimensional clusters developed with the fully converged aggregation model.
(a) Diffusion-limited aggregation. ū = 0, D = 0.166. (b) Advection–diffusion-limited aggregation
ū = 0.05 (from left to right), D = 0.166; both clusters contain 4500 particles.

aThink of the convex hull as the surface given by the tightest gift wrapping around the object.
bSee http://www.geom.umn.edu/software/qhull/.
cSee http://mathworld.wolfram.com/ANOVA.html.



February 19, 2004 11:17 WSPC/141-IJMPC 00529

1176 R. M. H. Merks et al.

Fig. 3. The cross-sections through 3D resource fields and clusters developed with the advection–
diffusion-limited aggregation model. The single particle clusters were grown for 4700 (top) and
6150 (middle) growth cycles. The multiple particle clusters were grown for 450 growth cycles.
Flows (when applicable) are directed from left to right.
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Table 2. The compactness and fractal dimension. Abbreviations used are: SADLA:

Single particle advection–diffusion-limited aggregation; FC: full convergence; PC:
partial convergence; MADLA: Multiple particle advection–diffusion-limited aggre-
gation; MADLA II: MADLA with growth function as in Eq. (7); D: diffusion co-
efficient; Pélat: lattice Péclet-number; Fr : fractal dimension. Mean and standard
deviation of the compactness and fractal dimension are calculated over five simula-
tions.

Model Figure (s) ū D Pélat Compactness Fr

SADLA, FC 2(a), 3(a) 0.0 0.167 0.0 0.12 ± 0.01 2.62 ± 0.36
SADLA, FC 2(b), 3(b) 0.05 0.167 0.3 0.12 ± 0.01 2.60 ± 0.21
SADLA, PC 3(c) 0.01 0.167 0.06 0.12 ± 0.01 2.61 ± 0.07
SADLA, PC 3(d) 0.01 0.00125 8 0.14 ± 0.01 2.67 ± 0.34
MADLA 3(e) 0.01 0.167 0.06 0.10 ± 0.00 2.59 ± 0.11
MADLA 3(f) 0.01 0.00125 8 0.26 ± 0.00 3.03 ± 0.07
MADLA II 4(a) 0.01 0.167 0.06 0.18 ± 0.00 2.58 ± 0.11
MADLA II 4(b) 0.01 0.00125 8 0.38 ± 0.01 2.99 ± 0.09

the mean flow velocity was 0.05 in lattice units. The diffusion coefficient was set to

0.166, giving lattice Péclet numbers of 0 and 0.30, respectively. Since the internal

structure of these three-dimensional pictures is difficult to interpret, we only show

cross-sections in the remainder of the paper. In Fig. 3 we present an overview of the

results of the advection–diffusion-limited aggregation models. In these figures the

grey scale indicates the particle concentration, and the flow direction is always along

the x-axis. In Figs. 3(a) and 3(b) we show the clusters of Fig. 2 in cross-section. The

applied flow did not affect the compactness nor the fractal dimension (see Table 2).

We also tried to increase the Péclet-number further, by using a smaller diffusion

constant. However, this led to extremely high computation times (150 growth cycles

with D = 0.083 took four days of computer time on 32 processors of the DAS-2),

which made the model computationally intractable.

In order to keep the simulation times feasible, we compared the results of the

full convergence model to a model where a fixed amount of moment propagation

iterations was applied per aggregation step. In Figs. 3(c) and 3(d) we show two

results of this model, in which we applied 50 moment propagation iterations and

10 LBGK iterations per aggregation step. In both simulations, the mean flow ve-

locity was set to ū = 0.01. For these parameter settings, the results of the partial

convergence model did not differ from the full convergence model: neither the com-

pactness nor the fractal dimension differed significantly. When we increased the

Péclet-number, by decreasing the diffusion coefficient to 0.001, we found a “wake”

behind the cluster, and the cluster tended to grow into the direction of the flow.

The internal structure of the clusters was however hardly affected; the compactness

was found to be slightly, though significantly different (Table 2), but the fractal

dimension showed no significant difference.

In Figs. 3(e) and 3(f) we present results of the multi-particle model. Both simu-

lations were carried out under the influence of a flow of velocity ū = 0.01. When we
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used a large diffusion coefficient (D = 0.167) we found open, DLA-like clusters (see

Fig. 3(e)). When the diffusion coefficient was decreased (Fig. 3(f)), the clusters be-

came more dense (Table 2). However, when we applied 250 rather than 50 moment

propagation per growth cycle, less dense clusters developed (with C = 0.17± 0.0),

indicating that the advection–diffusion fields had not equilibrated after 50 itera-

tions (data not shown). This suggests that the amount of diffusion (Dt), rather

than the Péclet-number, is an important factor in determining the compactness of

the cluster.

The clusters that developed in the multiple particle model did not become as

dense as the clusters reported previously.11,13 In fact, Kaandorp et al.11 used an

alternative model for the aggregation probability (Kaandorp, personal communica-

tion). In this model, the aggregation probability is the normalized probability that

a particle collides with a solid–fluid interface after propagation,

Paggr(xk) =
R(xk , t)

∑

i fi(xk , t)δ(xk + ci, t)
∑

j R(xj , t)
∑

i fi(xj , t)δ(xj + ci, t)
, (7)

where
∑

i sums over the 19 velocities of the lattice and where δ(xi, t) = 1 when xi

is a solid node and δ(xi, t) = 0 when it is fluid. Note that this aggregation function

favors the addition of nodes enclosed by several solid nodes.

The clusters shown in Fig. 4 were developed using this growth function. With

a high diffusion coefficient of D = 0.17, these clusters became a bit more dense

(Fig. 4(a); Table 2) than the clusters that were developed with the standard growth

function (Fig. 3(e)). The clusters were significantly more dense than with the stan-

dard growth function when a smaller diffusion coefficient was used (Fig. 4(b)). Note

that the clusters are somewhat more dense away from the flow. This effect becomes

stronger if the ground plane is removed from the simulation, resulting in a higher

velocity around the cluster (data not shown).
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Partial convergence

u=0.01, D=0.17 u=0.01, D=1.25 x 10
−3

Fig. 4. The advection–diffusion-limited aggregation model with the alternative aggregation func-
tion as used by Kaandorp et al.11 Flow is directed from left to right, ū = 0.01.
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4. Discussion

In this paper we studied three-dimensional advection–diffusion-limited aggregation

(ADLA) under the influence of a laminar flow. In this straightforward extension of

the diffusion–limited aggregation (DLA) model by Witten and Sander,1 particles are

transported by a diffusive process which is biased by a governing flow. We studied

two variants of this model, the single particle model and the multiple particle model.

In the single particle model one particle is added in a growth cycle. In the multiple

particle model, during a growth cycle one or several particles are added, depending

on the current size of the cluster. Apart from several complications, which we will

discuss below, this model could be seen as a hybrid between the diffusion-limited

aggregation model and models of Laplacian growth, where growth occurs over the

full surface of the cluster in parallel.

We studied two variants of the single particle ADLA model. These variants

differ in the way the flow and dispersion fields are relaxed. In the first variant,

we relax the advection–diffusion field until the change per unit time of the total

mass falls below a threshold (Eq. (3)). Although this full convergence model would

be preferred when studying advection–diffusion-limited aggregation in a Meakin

model, these simulations quickly became computationally intractable when small

diffusion coefficients were used. After adding a new particle to the cluster, it often

took hundreds to thousands of time steps before the resource field had sufficiently

stabilized. Note that this indicates a major caveat of our simulation methods, be-

cause it shows the assumption that the flow and resource fields are in equilibrium

cannot be always met.

Being aware of this caveat, we also studied an alternative model in which the

tracer field was relaxed for a fixed number of time steps (50 per growth cycle). In

both cases, the cluster tended to grow slightly into the direction of the governing

flow, but the overall structure of the clusters was unaffected by flow, as expressed by

the fractal dimension and the compactness. When we used a higher Péclet-number

by decreasing the diffusion coefficient (Fig. 3(d)), the cluster became slightly more

compact. However, this small effect is most likely unphysical, because we use a

fixed advection–diffusion time and because the used Péclet-number is well over

the upper-limit above which the moment propagation method no longer produces

physical results.25

To keep the computations tractable, we only studied the partial convergence

variant of the multi-particle model, which is more closely related to the model

studied previously in our group.11 For small Péclet-numbers, the resulting clusters

were indistinguishable from the clusters developing with the single particle model,

based on the fractal dimension and on the compactness of the clusters. However,

when we decreased the diffusion coefficient, keeping the flow velocity constant (as

in Kaandorp et al.11), the clusters compactified. In the context of accretion models,

which are related to models of Laplacian growth, we have observed that growth

forms become more compact when the time scales of growth and resource transport

come closer together.30 In the ADLA model the growth rate may not be large
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enough to reach this region of parameter space. However, when the growth rate is

increased as in the multiple particle model, this region will be reached when the

resource transport is slowed down by decreasing the diffusion coefficient.

In the single particle models the laminar flow did not affect the internal struc-

tures of the clusters. In these models, the highest flow velocity is found at a large

distance from the clusters, whereas the flow velocity close to the clusters is very

low. Thus in close vicinity of the cluster, resource transport is dominated by diffu-

sion, resulting in the DLA-like growth dynamics. Note that the diffusion coefficients

for which compact clusters were obtained were extremely low. In fact, the moment

propagation method that we have used in this paper becomes invalid for such low

values,25 since in that case negative values are propagated through the lattice. The

probability of this becomes larger as the flow velocity increases. In our simulations

the clusters grow along the flow for such incorrect parameter settings, which may

be explained by extremely low or even negative tracer concentrations occurring at

the front where the flow velocity is highest (data not shown).

With these results, it becomes necessary to reinterpret results of Kaandorp

et al. (1996, 2001), who claimed that DLA clusters become more compact under

the influence of advection. Our results suggest that this compactification occurs

only in the multi-particle model that compactification only results when the net

diffusion per growth cycle (Dt) is small and it occurs preferentially at parameter

settings where the moment propagation method no longer produces physical results.

Applying the methods described in Merks et al. (2002)25 it is easily shown that in

the simulations by Kaandorp et al,11 who used a 24-velocity model on a FCHC-

lattice, the lattice Péclet-number may never exceed a value of 2. However, the

Péclet-numbers up to 3 as reported by Kaandorp et al.11 were based on the mean

velocity. Optimistically estimating umax = 2∗ū, the lattice Péclet-numbers reported

previously should be multiplied by a factor of two to get the maximum Péclet-

numbers. Hence, we estimate that negative amounts of tracer may be transported

in simulations with reported Pélat > 1.0.

A further difference between our results and those presented earlier is the growth

direction of the clusters. We found clusters growing mainly towards the source plane,

where the clusters may slightly deviate towards the flow, or even away from the

flow. Kaandorp et al.11 reported that the clusters had the strong tendency to grow

towards the flow; this tendency became stronger when the diffusion coefficient was

decreased. This difference may be attributed to the following. In the simulations

presented here, the initial condition was a linear concentration field, the stable

solution for a system with a source and a sink plane. Kaandorp et al.11 started

with all concentrations set to 1.0 (personal commuication). From the analytic, time

dependent solution of the diffusion equation, the time to relax from this initial

condition to the stable linear solution is estimated as t ≈ L2/D, where L is the

height of the simulation box in lattice units. For the highest diffusion coefficient that

they used (D = 0.25), this time already exceeds the total advection–diffusion time

available in a simulation of 1000 growth cycles with 50 tracer iterations in total.
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Hence the initial shape of the tracer field affects the growing clusters throughout

the time of the simulation. When the diffusion coefficient is decreased, this effect

becomes even stronger. In an empty simulation box and with the lowest diffusion

coefficient (D = 0.00125), at the end of the total simulation time the concentration

would follow a sharp gradient from the sink plane to about one fifth of the simulation

box; everywhere else the concentration would be close to 1. The absence of a full top-

to-bottom resource gradient removes the tendency of the clusters to grow towards

the source plane. This may well explain why the growth forms by Kaandorp et al.11

bent more strongly against the flow when the diffusion coefficient was decreased.

The moment propagation method that we use in this paper seems not very

well-suited for the simulation of ADLA. It is computationally very intensive to

reach stable flow and resource fields. Moreover, we can only reach moderate Péclet-

numbers.25 Particle tracking methods31 may be better suited for this purpose. Such

methods simulate off-lattice random walks biased by the flow field, and would re-

sult in a model more closely related to the Witten and Sander1 model. In such a

discrete model one would need to track only the single particle to be added to the

aggregate, making it computationally much less demanding than the continuous

methods which were applied here and in the previous work.

In conclusion, we could not confirm the observation that DLA-clusters com-

pactify as “the flow becomes more important (Pé increases)”.11 This finding is in

agreement with the previous two-dimensional studies of advection–diffusion-limited

aggregation.8–10,12 Its explanation may be given by the fact that the flow velocity

is very low in close vicinity and inside of the cluster, resulting in diffusion-limited

resource transport. We expect, however, that higher Reynolds-number, instable and

turbulent flows may affect the aggregation process, since these may lead to recircula-

tions inside the cluster. Such effects may well be important in the growth of marine

sessile organisms, to which the ADLA-model was previously applied,11,13 and in

flow-driven electrodeposition.18 Advective transport was found to affect the com-

pactness in a model of bacterial plaques,32 caused by increased nutrient transport

towards the plaque. However, in this model some biomass spreading was allowed,

which distributed the extra growth over a small area of the plaque. In diffusion-

limited aggregation models, attachment is irreversible and immediately affects the

flow and diffusion fields which may explain why we did not find a flow effect.
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